Part Number Hot Search : 
CJ78M09 15KP10 2SB547A 48D05 NB40L IRFZ46 SK2628 2N540
Product Description
Full Text Search
 

To Download IR2112SNBSP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60026-N
IR2112(S)
HIGH AND LOW SIDE DRIVER
Features
* Floating channel designed for bootstrap operation * Fully operational to +600V * Tolerant to negative transient voltage * Gate drive supply range from 10 to 20V * Undervoltage lockout for both channels * 3.3V logic compatible * * * *
Separate logic supply range from 3.3V to 20V Logic and power ground 5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs dV/dt immune
Product Summary
VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 600V max. 200 mA / 420 mA 10 - 20V 125 & 105 ns 30 ns
Packages
Description
The IR2112(S) is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge16-Lead SOIC dized monolithic construction. Logic inputs are com(wide body) 14-Lead PDIP patible with standard CMOS or LSTTL outputs, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Typical Connection
HO VDD HIN SD LIN V SS VCC V DD HIN SD LIN V SS VCC COM LO VB VS
up to 600V
TO LOAD
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2112(S)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
VB VS VHO VCC VLO VDD VSS VIN dVs/dt PD RTHJA TJ TS TL
Definition
High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Figure 2) Package Power Dissipation @ TA +25C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) (14 Lead DIP) (16 Lead SOIC) (14 Lead DIP) (16 Lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VCC - 25 VSS - 0.3 -- -- -- -- -- -- -55 --
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VSS + 25 VCC + 0.3 VDD + 0.3 50 1.6 1.25 75 100 150 150 300
Units
V
V/ns W
C/W
C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
VB VS VHO VCC VLO VDD VSS VIN TA
Definition
High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Ambient Temperature
Min.
VS + 10 Note 1 VS 10 0 VSS + 3 -5 (Note 2) VSS -40
Max.
VS + 20 600 VB 20 VCC VSS + 20 5 VDD 125
Units
V
C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD.
2
www.irf.com
IR2112(S)
Dynamic Electrical Characteristics
VBIAS (VCC , V BS , VDD ) = 15V, CL = 1000 pF, TA = 25C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
ton toff tsd tr tf MT
Definition
Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On/Off
Figure Min. Typ. Max. Units Test Conditions
7 8 9 10 11 -- -- -- -- -- -- -- 125 105 105 80 40 -- 180 160 160 130 65 30 Figure 5 VS = 0V VS = 600V VS = 600V
ns
Static Electrical Characteristics
VBIAS (VCC , VBS, VDD) = 15V, TA = 25C and VSS = COM unless otherwise specified. The VIN, VTH and I IN parameters are referenced to V SS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
VIH VIL VOH VOL ILK IQBS IQCC IQDD IIN+ IINVBSUV+ VBSUVVCCUV+ VCCUVIO+ IO-
Definition
Logic "1" Input Voltage Logic "0" Input Voltage High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Quiescent VDD Supply Current Logic "1" Input Bias Current Logic "0" Input Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current
Figure Min. Typ. Max. Units Test Conditions
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 9.5 -- -- -- -- -- -- -- -- -- 7.4 7.0 7.6 7.2 200 420 -- -- -- -- -- 25 80 2.0 20 -- 8.5 8.1 8.6 8.2 250 500 -- 6.0 100 100 50 60 180 5.0 40 1.0 9.6 9.2 V 9.6 9.2 -- -- mA VO = 0V, VIN = VDD PW 10 s VO = 15V, VIN = 0V PW 10 s A V mV IO = 0A IO = 0A VB = VS = 600V VIN = 0V or VDD VIN = 0V or VDD VIN = 0V or VDD VIN = VDD VIN = 0V
www.irf.com
3
IR2112(S)
Functional Block Diagram
VB VDD RQ S HIN
HV LEVEL SHIFT
UV DETECT PULSE FILTER
R R S
Q HO
VDD /VCC LEVEL SHIFT
PULSE GEN
VS
SD UV DETECT
VCC VDD /VCC LEVEL SHIFT
LIN RQ VSS S
LO DELAY COM
Lead Definitions
Symbol
VDD HIN SD LIN VSS VB HO VS VCC LO COM
Description
Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return
Lead Assignments
14 Lead DIP
16 Lead SOIC (Wide Body)
IR2112 Part Number
4
IR2112S
www.irf.com
IR2112(S)
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN LIN
ton
50%
50%
tr 90%
toff 90%
tf
HO LO
10%
10%
Figure 3. Switching Time Test Circuit
Figure 4. Switching Time Waveform Definition
SD
50%
HIN LIN
50%
50%
LO
tsd
HO
10%
HO LO
90%
MT
MT 90%
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
www.irf.com
5
IR2112(S)
250 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 200 250 200 150 100 Typ. 50 0 -50 -25 0 25 50 Temperature 75 100 125 10 12 14 16 18 20 V CC/VB S Supply Voltage (V) Max .
Max.
150 100
Typ.
50 0
Figure 7A. Turn-On Time vs. Te mperature
Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage
250 Turn-Off Delay Time (ns) 200
400 Turn-On Delay Time (ns)
300
Max.
200
Max.
150 100
100 0 0 2 4 6
Typ.
Typ.
50 0
8
10 12 14 16 18 20
-50
-25
0
25
50
75
100
125
VDD Supply Voltage (V)
Temperature (C) Figure 8A. Turn-Off Time vs. Temperature
Figure 7C. Turn-On Time vs. VDD Supply Voltage
250 Turn-Off Delay Time (ns)
Turn-OFF Delay Time (ns)
400
200 150 100
Max.
300
Max.
200 100
Typ.
50 0 10 12 14 16 18 20
Typ.
0 0 2 4 6 8 10 12 14 16 18 20
VCC/VB S Supply Voltage (V)
VDD Supply Voltage (V)
Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage
Figure 8C. Turn-Off Time vs. VDD Supply Voltage
6
www.irf.com
IR2112(S)
250 Shutdown Delay Time (ns) Shutdown Delay Time (ns) 200 250 200 150 100 Typ. 50 0 10 12 14 16 18 20 Max.
Max.
150 100 50 0 -50 -25 0 25 50 75 100 125
Typ.
Temperature (C) Figure 9A. Shutdow n Tim e vs. Te mpe ra ture
400 Shutdown Delay Time (ns)
VCC/VB S Supply Voltage (V)
Figure 9B. Shutdown Delay Time vs. VCC/VBS Supply Voltage
250 Turn-On rise Time (ns) 200 150 100 50 0 -50
Typ. Max.
300
Max.
200
100
Typ.
0 0 2 4 6 8 10 12 14 16 18 20
-25
0
VDD Supply Voltage (V)
25 50 75 Temperature (C)
100 125
Figure 9C. Shutdown Time vs. VDD Supply Voltage
Figure 10A. Turn-On Rise Time vs. Temperature
125 Turn-On Fall Time (ns) 100 75 50 25 0
Turn-On Rise Time (ns)
250 200 150 100 50 0 10 12 14 16 18 20
Typ. Max.
Max.
Typ.
-50 -25 0 25 50 75 100 125
Tem perature (C)
VBIAS Supply Voltage (V)
Figure 10B. Turn-On Rise Time vs. Voltage Figure 11A Turn-On Fall Time vs. Temperature
www.irf.com
7
IR2112(S)
12 5
15 Logic "1" Input Threshold (V) 12
Tu rn-O ff F all Tim e (ns )
10 0
Max.
75 50
Min.
9 6 3 0 -50 -25 0 25 50 75 100 125
Typ.
25 0 10 12 14 16 V B IA S S u pp ly V oltag e (V ) 18 20
Temperature (C)
Figure 11B. Turn-Off Fall Time vs. Voltage
Figure 12A. Logic "I" Input Threshold vs. Temperature
15 Logic "0" Input Threshold (V) 12 9
Log ic " 1 " Input Tres hold
9
12
15
Min.
6
Max.
6 3 0
0 2.5
3
5
7.5
10
12.5
15
17.5
20
-5 0
-2 5
0
25
50
75
100
125
V DD Log ic
S upply V oltage (V )
Te m p e ra t u re (C )
Figure 12B. Logic "I" Input Threshold vs. Voltage
15 Logic " 0 " Input Treshold (V) 1 High Level O utpu t V oltage (V ) 0.8 0.6 0.4
Figure 13A. Logic "0" Input Threshold vs. Temperature
6
9
12
Max.
3
M ax . 0.2 0 -50 -25 0 25 50 75 100 125
0 2.5
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
T e mp e ra tu re
Figure 14A. High Level Output vs. Temperature
Figure 13B. Logic "0" Input Threshold vs. Voltage
8
www.irf.com
IR2112(S)
Low Level Output Voltage (V)
High Level Output Voltage (V) 1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20 VBAIS Supply Votage (V)
1 0.8 0.6 0.4 0.2 0 -50
Max.
-25
0
25
50
75
100
125
Temperature (C)
Figure 14B. High Level Output vs. Voltage
Figure 15A. Low Level Output vs. Temperature
Offset Supply Leakage Current (uA)
Low Level Output Voltage (V)
1 0.8 0.6 0.4 Max. 0.2 0 10 12 14 16 18 20
500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Max.
VBIAS Supply Votage (V)
Temperature (C) Figure 16A. Offse t Supply Curre nt vs. Tem pe ra ture
Figure 15B. Low Level Output vs. Voltage
Offset Supply Leakage Current (uA)
500 400 300 200 M ax . 100 0 0 100 200 300 400 500 600 V B B oos t V oltage (v)
VBS Supply Current (uA)
100 80 60
Max.
40 20
Typ.
0 -50 -25 0 25 50 75 100 125 Tem perature (C)
Figure 16B. Offset Supply Current vs. Voltage
Figure 17A. VBS Supply Current vs. Temperature
www.irf.com
9
IR2112(S)
100 VBS Supply Current (uA)
Vcc Supply Current (uA) 300 250 200 150 100 50 0
80 M ax . 60 40 20 0 10 12 14 16 18 20 Ty p.
Max.
Typ.
-5 0 -2 5 0 25 50 75 100 125
V BS Floating Supply V oltage (V )
Te m p e ra t u re ( C )
Figure 17B. VBS Supply Current vs. Voltage
300 Vcc Supply Current (uA) 250 200 150 100 50 0 10 12 14 16 18 20
Figure 18A. VCC Supply Current vs. Temperature
12 VDD Supply Current (uA) 10 8 6 4 2 0 -50 -25 0 25 50 75 100 125 Temperature (C)
Max.
Max.
Typ.
Typ.
Vcc Fixed Supply V oltage (V)
Figure 18B. VCC Supply Current vs. Voltage
12 VDD Supply Current (uA) 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 VDD Logic Supply Voltage (V) 18 20
Figure 19A. VDD Supply Current vs. Temperature
Logic "1 " Input Bias Current (uA) 100 80 60
Max.
Max.
40 20
Typ.
Typ.
0 -50 -25 0 25 50 75 100 125
Temperature (C)
Figure 19B. VDD Supply Current vs. VDD Voltage
Figure 20A. Logic "I" Input Current vs. Temperature
10
www.irf.com
IR2112(S)
100 5 Logic "0" Input Bias Current (uA 4 3 2
Logic " 1" Input Bias Current (uA)
80 60 40 20
Max.
Max.
1 0 -50 -25 0 25 50 75 100 125
Typ.
0 0 2 4 6 8 10 12 14 16 V D D L ogic S upply V oltage (V ) 18 20
Temperature (C)
Figure 20B. Logic "1" Input Current vs. VDD Voltage
Figure 21A. Logic "0" Input Current vs. Temperature
11 10 9
Logic "0" Input Bias Current (uA)
4 3 2
VBS Undervoltage Lockout +(V)
5
Max. Typ.
8
Max.
1 0 0 2 4 6 8 10 12 14 16 18 20
Min.
7 6 -50 -25 0 25 50 75 100 125
VDD Supply Voltage (V)
Figure 21B. Logic "0" Input Current vs. VDD Voltage
11 VBS Undervoltage Lockout -(V) 10
Temperature (C)
Figure 22. VBS Undervoltage (+) vs. Temperature
11 Vcc Undervoltage Lockout +(V) 10 9 8 7 6 -50 -25 0 25 50 75 100 125
Max.
9
Max. Typ. Min.
Typ.
8
Min.
7 6 -50 -25 0 25 50 75 100 125 Temperature (C)
Figure 23. VBS Undervoltage (-) vs. Temperature
Temperature (C) Figure 24. VCC Undervoltage (-) vs. Temperature
www.irf.com
11
IR2112(S)
11 VCC Undervoltage Lockout - (V)
500 Output source Current (mA) 400 300
10
Max.
9
Typ.
8
Typ.
200
Min.
7 6 -50 -25 0 25 50 75 100 125 Tem perature (C)
Min.
100 0 -50 -25 0 25 50 75 100 125 Tem perature (C)
Figure 25. VCC Undervoltage (-) vs. Temperature
500 400
Figure 26A. Output Source Current vs. Temperature
750 Output Sink Current (mA) 600
Output source Current (mA)
Typ.
300 200 100 0 10 12 14 16 18 20
Typ.
450 300 150 0 -50 -25 0 25 50 75 100 125 Temperature (C)
Min.
Min.
VBIAS Supply Voltage (V)
Figure 26B. Output Source Current vs. Voltage
750 Output Sink Current (mA) 600
Figure 27A. Output Sink Current vs. Temperature
Typ.
450 300 150 0 10 12 14 16 18 20 VBIAS Supply Voltage (V)
Min.
Figure 27B. Output Sink Current vs. Voltage
12
www.irf.com
IR2112(S)
150 150
320V
125 Junction Temperature (C)
320V
125 Junction Temperature (C)
100
100
140V
75
140V
75
10V
50
10V
50
25
25
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
Figure 28. IR2112 TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
150
320V
Figure 29. IR2112 TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
150
320V 140V 10V
125
140V
125 Junction Temperature (C)
Junction Temperature (C)
100
10V
100
75
75
50
50
25
25
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
Figure 30. IR2112 TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
150
320V
Figure 31. IR2112 TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V
150
320V 140V
125 Junction Temperature (C) Junction Temperature (C)
125
100
140V
100
75
10V
75
10V
50
50
25
25
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
Figure 32. IR2112S TJ vs. Frequency (IRFBC20) RGATE = 33, VCC = 15V
Figure 33. IR2112S TJ vs. Frequency (IRFBC30) RGATE = 22, VCC = 15V
www.irf.com
13
IR2112(S)
320V 140V 320V 140V 10V
150
150
125 Junction Temperature (C)
10V
125 Junction Temperature (C)
100
100
75
75
50
50
25
25
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
0 1E+2 1E+3 1E+4 Frequency (Hz) 1E+5 1E+6
Figure 34. IR2112S TJ vs. Frequency (IRFBC40) RGATE = 15, VCC = 15V
Figure 35. IR2112S TJ vs. Frequency (IRFPE50) RGATE = 10, VCC = 15V
0.0
20.0
Typ.
-6.0
VSS Logic Supply Offset Voltage (V)
-3.0 VS Offset Supply Voltage (V)
16.0
12.0
-9.0
8.0
Typ.
-12.0
4.0
-15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V)
0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage
Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage
14
www.irf.com
IR2112(S)
Case outline
14-Lead PDIP
01-6010 01-3002 03 (MS-001AC)
16-Lead SOIC (wide body)
01 6015 01-3014 03 (MS-013AA)
5/31/2001
www.irf.com
15


▲Up To Search▲   

 
Price & Availability of IR2112SNBSP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X